Gujarat PGCET Syllabus for Networking, Communication and Web Technology (NW) 2021

0
102
Gujarat PGCET

Gujarat PGCET Syllabus 2021 for Networking, Communication and Web Technology- Gujarat PGCET stands for Gujarat post graduate common entrance test.  This entrance test Is to be held on a state level entrance examination. This entrance examination is going to be conducted by the admission community of professional course (ACPC). After clearing Gujarat PGCET 2021 entrance exam applicants may be able to sit in the first year of professional postgraduate courses. There are various professional graduate courses included in this entrance examination these are M.Tech/M.E.

Gujarat PGCET 2021 Computer Engineering and Information Technology Syllabus

In this section, we are going to discuss Gujarat PGCET 2021 Computer Engineering and Information Technology syllabus in detail. But before that, All applicants must be aware of the Gujarat PGCET 2021 exam pattern. Gujarat PGCET exam is the complete offline or pen- paper-based exam. The total duration of the exam is 1 hour 30 minutes (90  minutes). The question to be asked by the question paper is a multiple choice question and there are a total hundred questions to be asked. The question paper will be released in English medium. The marking scheme of the Gujarat PGCET 2021 exam is that every correct answer applicant will be awarded one mark and there will be no negative marking for any wrong answer. 

Gujarat PGCET 2021 Syllabus for Networking, Communication and Web Technology (NW)

TopicsChapters
Engineering MathematicsLinear Algebra
Calculus
Differential Equations
Complex Variables
Probability and Statistics
Numerical Methods
Networking, Communication and Web TechnologyDigital Logic
Computer Organization and Architecture
Programming and Data Structures
Algorithms
Theory of Computation
Compiler Design
Operating System
Databases
Information Systems and Software Engineering
Computer Networks
Web technologies

Gujarat PGCET 2021 Syllabus for Networking, Communication and Web Technology Engineering

Engineering Mathematics

Topics under Engineering Mathematics is specified as below:

Linear Algebra: Matrix algebra, Systems of linear equations, Eigenvalues and eigenvectors.

Calculus: Functions of a single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one-dimensional heat and wave equations and Laplace equation.

Complex variables: Analytic functions, Cauchy’s integral theorem, Taylor and Laurent series.

Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions.

Numerical Methods: Numerical solutions of linear and non-linear algebraic equations Integration by trapezoidal and Simpson’s rule, single and multi-step methods for differential equations.

Networking, Communication & Web Technology

Digital Logic: Logic functions, Minimization, Design and synthesis of combinational and sequential circuits; Number representation and computer arithmetic (fixed and floating-point).

Computer Organization and Architecture: Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface, I/O interface (Interrupt and DMA mode), Instruction pipelining, Cache and main memory, Secondary storage.

Programming and Data Structures: Programming in C; Functions, Recursion, Parameter passing, Scope, Binding; Abstract data types, Arrays, Stacks, Queues, Linked Lists, Trees, Binary search trees, Binary heaps.

Algorithms: Analysis, Asymptotic notation, Notions of space and time complexity, Worst and Average case analysis; Design: Greedy approach, Dynamic programming, Divide and conquer; Tree and graph traversals, Connected components, Spanning trees, Shortest paths; Hashing, Sorting, Searching. Asymptotic analysis (best, worst, average cases) of time and space, upper and lower bounds, Basic concepts of complexity classes P, NP, NP-hard, NP-complete.

Theory of Computation: Regular languages and finite automata, Context free languages and Push-down automata, Recursively enumerable sets and Turing machines, Undecidability.

Compiler Design: Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target code generation, Basics of code optimisation.

Operating System: Processes, Threads, Inter-process communication, Concurrency, Synchronisation, Deadlock, CPU scheduling, Memory management and virtual memory, File systems, I/O systems, Protection and security.

Databases: ER-model, Relational model (relational algebra, tuple calculus), Database design (integrity constraints, normal forms), Query languages (SQL), File structures (sequential files, indexing, B and B+ trees), Transactions and concurrency control.

Information Systems and Software Engineering: Information gathering, requirement and feasibility analysis, data flow diagrams, process. Specifications, input/output design, process life cycle, planning and managing the project, design, coding, testing, implementation, maintenance.

Computer Networks: ISO/OSI stack, LAN technologies (Ethernet, Token ring), Flow and error control Techniques, Routing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (ICMP, DNS, SMTP, pop, FTP, HTTP); Basic concepts of hubs, switches, gateways, and routers. Network security basic concepts of a public key and private key cryptography, digital signature, firewalls.

Web technologies: HTML, XML, basic concepts of client-server computing.

Leave a Reply